The preferential binding of histone H1 to DNA scaffold-associated regions is determined by its C-terminal domain.

نویسندگان

  • Alicia Roque
  • Mary Orrego
  • Imma Ponte
  • Pedro Suau
چکیده

Histone H1 preferentially binds and aggregates scaffold-associated regions (SARs) via the numerous homopolymeric oligo(dA).oligo(dT) tracts present within these sequences. Here we show that the mammalian somatic subtypes H1a,b,c,d,e and H1 degrees and the male germline-specific subtype H1t, all preferentially bind to the Drosophila histone SAR. Experiments with the isolated domains show that whilst the C-terminal domain maintains strong and preferential binding, the N-terminal and globular domains show weak binding and poor specificity for the SAR. The preferential binding of SAR by the H1 molecule thus appears to be determined by its highly basic C-terminal domain. Salmine, a typical fish protamine, which could have its evolutionary origin in histone H1, also shows preferential binding to the SAR. The interaction of distamycin, a minor groove binder with high affinity for homopolymeric oligo(dA).oligo(dT) tracts, abolishes preferential binding of the C-terminal domain of histone H1 and protamine to the SAR, suggesting the involvement of the DNA minor groove in the interaction.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effect of aspirin on the interaction of histone 05 and 05-DNA

The linker histones (H1 or H5) which play a key role in the folding of chromatin, are general repressors of gene expression. Nuclei of the mature chicken erythrocytes (and in some mammalian cells) contain both of them. Although the interaction of H5 with DNA is stronger than that of H1, it does not prevent the transcription of some erythroid-specific genes. It has been shown that some modificat...

متن کامل

Molecular modeling of the chromatosome particle.

In an effort to understand the role of the linker histone in chromatin folding, its structure and location in the nucleosome has been studied by molecular modeling methods. The structure of the globular domain of the rat histone H1d, a highly conserved part of the linker histone, built by homology modeling methods, revealed a three-helical bundle fold that could be described as a helix-turn-hel...

متن کامل

SPECTROSCOPIC EVALUATION OF THE INTERACTION OF A TETRAZOLE DERIVATIVE SYNTHESIZED BY SEMI-GREEN METHOD WITH CALF THYMUS DNA AND BOVINE SERUM PROTEIN

Background & Aims: In recent decades, the application of tetrazole structures in various fields of medicine and industry has become very important, because they can cause structural and thus functional changes in the proteins. In this article, the effect of a new tetrazole derivative on calf thymus DNA (Ct-DNA) as well as on bovine serum albumin protein (BSA) in the solution was determined usin...

متن کامل

Interaction of chromatin with a histone H1 containing swapped N- and C-terminal domains

Although the details of the structural involvement of histone H1 in the organization of the nucleosome are quite well understood, the sequential events involved in the recognition of its binding site are not as well known. We have used a recombinant human histone H1 (H1.1) in which the N- and C-terminal domains (NTD/CTD) have been swapped and we have reconstituted it on to a 208-bp nucleosome. ...

متن کامل

Immunogenic and Protective Potentials of Recombinant Receptor Binding Domain and a C-Terminal Fragment of Clostridium botulinum Neurotoxin Type E

Clostridium Botulinum Type E neurotoxin heavy chain consists of two domains: the translocation domain asthe N-terminal half and the binding domain as the Cterminal half (Hc). One effective way to neutralize botulinum neurotoxin is to inhibit binding of this toxin to neuromuscular synapses with antibodies against binding domain. Two synthetic genes, coding for Hc (the full length binding d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nucleic acids research

دوره 32 20  شماره 

صفحات  -

تاریخ انتشار 2004